A potential diagnostic and prognostic biomarker in gastric cancer

an in silico analysis of the GPNMB gene

Authors

  • Bianca de Andrade Lopes Laboratório de Bioinformática, Instituto de Biotecnologia, Universidade de Caxias do Sul, Brasil. https://orcid.org/0000-0003-0066-642X
  • Fernanda Pessi de Abreu Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul
  • Pedro Lenz Casa Laboratório de Bioinformática, Instituto de Biotecnologia, Universidade de Caxias do Sul, Brasil. https://orcid.org/0000-0002-4666-9434
  • Marcos Vinícius Rossetto Laboratório de Bioinformática, Instituto de Biotecnologia, Universidade de Caxias do Sul, Brasil https://orcid.org/0000-0002-6310-5913
  • Scheila de Avila e Silva Laboratório de Bioinformática, Instituto de Biotecnologia, Universidade de Caxias do Sul, Brasil https://orcid.org/0000-0002-3472-3907

DOI:

https://doi.org/10.18226/25253824.v8.n13.13

Keywords:

Stomach Cancer, Differential Expression, Artificial Intelligence, Gene Expression Omnibus, The Cancer Genome Atlas

Abstract

Gastric cancer is the fourth most common and third deadliest cancer worldwide. Patients are usually asymptomatic or do not show specific symptoms during initial stages, which may hamper the diagnosis. A previous study identified 39 genes with biomarker potential in gastric cancer, among them the GPNMB gene. In this context, the objective of this study was to explore GPNMB as a prognostic and diagnostic biomarker for gastric cancer. Expression data was extracted from Gene Expression Omnibus (GSE33335 and GSE54129) and The Cancer Genome Atlas (TCGA-STAD). Data acquisition, preprocessing and statistical analyses were performed with an inhouse developed tool. The K-means and decision tree algorithms were applied for determining the potential of the gene as a diagnostic biomarker, whereas the survival analysis verified the influence of expression on prognosis. GPNMB expression was higher in tumoral tissue samples when compared to non-tumoral adjacent tissue (NT). K-means allowed formation of independent groups with normal and NT samples. Similarly, samples were correctly classified into normal and NT tissue groups with the decision tree according to expression values. Additionally, the survival analyses showed that the high expression of the GPNMB gene is associated with a worse prognosis. This research provided evidence on the potential of GPNMB as a biomarker for gastric cancer, given the gene demonstrated an important role in disease development.

Author Biography

Fernanda Pessi de Abreu, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul

Programa de Pós-Graduação em Genética e Biologia Molecular

References

de Araújo, N. D., de Farias, R. P., Pereira, P. B., de Figueirêdo, F. M., de Morais, A. M. B., Saldanha, L. C., & Gabriel, J. E. (2008). A era da bioinformática: seu potencial e suas implicações para as ciências da saúde. Estudos de biologia, 30(70/72): 143-8 https://doi.org/10.7213/reb.v30i70/72.22819

INSTITUTO Nacional de Câncer (INCA). O que é câncer? Disponível em <https://www.gov.br/inca/pt-br/assuntos/cancer/o-que-e-cancer>. Acesso em: 21 set. 2022.

Vogelstein, B., & Kinzler, K. W. (2015). The path to cancer—three strikes and you’re out. N Engl J Med, 373 (20), 1895-1898. https://www.nejm.org/doi/10.1056/NEJMp1508811

Ward, L. S. (2002). Entendendo o processo molecular da tumorigênese. Arquivos Brasileiros de Endocrinologia & Metabologia, 46, 351-360. https://doi.org/10.1590/S0004-27302002000400006

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68 (6), 394-424. https://doi.org/10.3322/caac.21492

Yakirevich, E., & Resnick, M. B. (2013). Pathology of gastric cancer and its precursor lesions. Gastroenterology Clinics, 42 (2), 261-284. https://doi.org/10.1016/j.gtc.2013.01.004

Van Cutsem, E., Sagaert, X., Topal, B., Haustermans, K., & Prenen, H. (2016). Gastric cancer. The Lancet, 388 (10060), 2654-2664. http://dx.doi.org/10.1016/S0140-6736(16)30354-3

Pasechnikov, V., Chukov, S., Fedorov, E., Kikuste, I., & Leja, M. (2014). Gastric cancer: prevention, screening and early diagnosis. World journal of gastroenterology: WJG, 20 (38), 13842. http://dx.doi.org/10.3748/wjg.v20.i38.13842

Lee, J. Y., Kim, H. I., Kim, Y. N., Hong, J. H., Alshomimi, S., An, J. Y., ... & Kim, C. B. (2016). Clinical significance of the prognostic nutritional index for predicting short-and long-term surgical outcomes after gastrectomy: a retrospective analysis of 7781 gastric cancer patients. Medicine, 95 (18), e3539. https://doi.org/10.1097/md.0000000000003539

Matsuoka, T., & Yashiro, M. (2018). Biomarkers of gastric cancer: Current topics and future perspective. World journal of gastroenterology, 24 (26), 2818. https://doi.org/10.3748%2Fwjg.v24.i26.2818

Henry, N. L., & Hayes, D. F. (2012). Cancer biomarkers. Molecular oncology, 6 (2), 140-146. https://doi.org/10.1016/j.molonc.2012.01.010

Rossetto, M. V. (2019). Análise de expressão diferencial de genes: uma solução computacional para identificação de biomarcadores de tumores gástricos em humanos. Dissertação, Universidade de Caxias do Sul https://repositorio.ucs.br/11338/8780

Taya, M., & Hammes, S. R. (2018). Glycoprotein non-metastatic melanoma protein B (GPNMB) and cancer: a novel potential therapeutic target. Steroids, 133, 102-107. https://doi.org/10.1016/j.steroids.2017.10.013

Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research, 30 (1), 207-210. https://doi.org/10.1093/nar/30.1.207

Cheng, L., Yang, S., Yang, Y., Zhang, W., Xiao, H., Gao, H., ... & Zhang, Q. (2012). Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker. Cancer letters, 326(1), 105-113. https://doi.org/10.1016/j.canlet.2012.07.031

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209, 2014.

Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., ... & Zupan, B. (2013). Orange: data mining toolbox in Python. the Journal of machine Learning research, 14 (1), 2349-2353. https://www.jmlr.org/papers/volume14/demsar13a/demsar13a.pdf

Lazaratos, A. M., Annis, M. G., & Siegel, P. M. (2022). GPNMB: a potent inducer of immunosuppression in cancer. Oncogene, 41 (41), 4573-4590. https://doi.org/10.1038/s41388-022-02443-2

Li, H., Xiao, Y., Wu, C. C., Yang, L. L., Cao, L. Y., Chen, D. R., ... & Sun, Z. J. (2019). High expression of GPNMB predicts poor prognosis in head and neck squamous cell carcinoma. Histology and Histopathology, 34(7). https://doi.org/10.14670/hh-18-084

Ren, F., Zhao, Q., Liu, B., Sun, X., Tang, Y., Huang, H., ... & Mi, Y. (2020). Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. Journal of Cellular Physiology, 235(3), 2738-2752. https://doi.org/10.1002/jcp.29177

Huang, Y. H., Chu, P. Y., Chen, J. L., Huang, C. T., Huang, C. C., Tsai, Y. F., ... & Liu, C. Y. (2021). Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Scientific reports, 11 (1), 12171. https://doi.org/10.1038/s41598-021-91588-3

Maric, G., Rose, A. A., Annis, M. G., & Siegel, P. M. (2013). Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. OncoTargets and therapy, 9 (6) 839-852. https://doi.org/10.2147/OTT.S44906

Published

2024-11-12

How to Cite

de Andrade Lopes, B., Pessi de Abreu, F., Lenz Casa, P., Rossetto, M. V., & de Avila e Silva, S. (2024). A potential diagnostic and prognostic biomarker in gastric cancer: an in silico analysis of the GPNMB gene. Interdisciplinary Journal of Applied Science, 8(13). https://doi.org/10.18226/25253824.v8.n13.13