Role of gene regulation in the action of lignocellulolytic enzymes

Authors

  • Fernanda Pessi de Abreu Universidade de Caxias do Sul https://orcid.org/0000-0002-5006-4833
  • Rosiendi Polesello Menin Universidade de Caxias do Sul
  • Nikael Souza de Oliveira Universidade de Caxias do Sul https://orcid.org/0000-0003-4713-4527
  • Alexandre Rafael Lenz Universidade de Caxias do Sul https://orcid.org/0000-0001-6699-2899
  • Scheila Ávila e Silva Universidade de Caxias do Sul
  • Aldo José Pinheiro Dillon Universidade de Caxias do Sul
  • Marli Camassola Universidade de Caxias do Sul

Keywords:

transcription factors, 2G ethanol, filamentous fungi

Abstract

Second-generation ethanol (2G), produced from plant biomass residues, such as rice straw and sugarcane bagasse, are promising alternatives towards increasing biofuel contribution in the world energy outlook. The efficient use of alternative carbon sources requires highly specific enzymatic complexes, mainly composed of cellulases and hemicellulases. The high cost of enzymatic hydrolysis, associated with a deficient production process, make 2G ethanol less competitive than traditional energy sources. Filamentous fungi stand out as organisms that produce lignocellulolytic enzymes. Moreover, they frequently appear in biotechnological research related to the genetic improvement of lineages, having the goal of increasing enzyme production. One way to increase enzymatic complexes production is by manipulation of gene expression of enzymes of interest, which can occur at the transcriptional level. Transcription factors (TF’s) are elements that act in the repression or activation of genes. Therefore, regulation of transcription factors, instead of a target gene, is an efficient and promising strategy to improve enzymatic cocktails produced by filamentous fungi. Overall, this work aims to provide a didactic revision on the action of transcription factors on top of the gene regulation of lignocellulolytic enzymes in fungi. The increment in gene expression and the optimization of enzyme production can turn enzymatic hydrolysis of plant biomass into a more accessible process, allowing an expansion of 2G ethanol contribution in the global market of biofuels.

References

PÉREZ, J. et al. Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. International Microbiology, [s.l.], v. 5, n. 2, p.53-63, 27 abr. 2002. Springer Nature. http://dx.doi.org/10.1007/s10123-002-0062-3.

KOHLHEPP, Gerd. Análise da situação da produção de etanol e biodiesel no Brasil. Estudos Avançados, [s.l.], v. 24, n. 68, p.223-253, 2010. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0103-40142010000100017.

TAHERZADEH, Mohammad; KARIMI, Keikhosro. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, [s.l.], v. 9, n. 9, p.1621-1651, 1 set. 2008. MDPI AG. http://dx.doi.org/10.3390/ijms9091621.

PEREIRA, Sandra et al. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnology for Biofuels, [s.l.], v. 8, n. 1, p.44-0, 2015. Springer Nature. http://dx.doi.org/10.1186/s13068-015-0224-0.

LYND, L. R. et al. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, [s.l.], v. 66, n. 3, p.506-577, 1 set. 2002. American Society for Microbiology. http://dx.doi.org/10.1128/mmbr.66.3.506-577.2002.

SILVA, Claudemir Natalino da et al. Second-generation ethanol from pineapple leaf fibers. Journal of Natural Fibers, [s.l.], p.1-9, 2 maio 2018. Informa UK Limited. http://dx.doi.org/10.1080/15440478.2018.1469453.

World Energy Balances 2018. International Energy Agency. Disponível (online) <https://www.iea.org/>.

MOHAN, Lindsey; CHEN, Jing; ANDERSON, Charles W. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, [s.l.], v. 46, n. 6, p.675-698, ago. 2009. Wiley. http://dx.doi.org/10.1002/tea.20314

FREIRE, D. M. G.; CASTILHO, L. C. Enzimas em Biotecnologia: Produção, aplicação e mercado. 2008.

FURLAN, Felipe F et al. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? Biotechnology for Biofuels, [s.l.], v. 6, n. 1, p.142-0, 2013. Springer Nature. http://dx.doi.org/10.1186/1754-6834-6-142.

MACRELLI, Stefano; GALBE, Mats; WALLBERG, Ola. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnology for Biofuels, [s.l.], v. 7, n. 1, p.26-0, 2014. Springer Nature. http://dx.doi.org/10.1186/1754-6834-7-26.

XAVIER, M. The Brazilian sugarcane ethanol experience. Issue analysis 3, Washington, DC, 2007. Disponível (online) <http://www.cei.org/pdf/5774.pdf>

ABO, Bodjui Olivier et al. Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Reviews on Environmental Health, [s.l.], v. 34, n. 1, p.57-68, 26 mar. 2019. Walter de Gruyter GmbH. http://dx.doi.org/10.1515/reveh-2018-0054.

GUPTA, Anubhuti; VERMA, Jay Prakash. Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, [s.l.], v. 41, p.550-567, jan. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.rser.2014.08.032.

JOUZANI, Gholamreza Salehi; TAHERZADEH, Mohammad J. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal, [s.l.], p.152-195, 1 mar. 2015. Greenwave Publishing of Canada. http://dx.doi.org/10.18331/brj2015.2.1.4.

PÉREZ, J. et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, [s.l.], v. 5, n. 2, p.53-63, 27 abr. 2002. Springer Nature. http://dx.doi.org/10.1007/s10123-002-0062-3.

VODOVNIK, Maša et al. Valorization of deinking sludge as a substrate for lignocellulolytic enzymes production by Pleurotus ostreatus. Journal of Cleaner Production, [s.l.], v. 197, p.253-263, out. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jclepro.2018.06.163.

WANG, Mingyu et al. Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production. Biotechnology in China Iii: Biofuels and Bioenergy, [s.l.], p.1-24, 2012. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/10_2011_131.

CAZY. Carbohydrate Active Enzymes database. 2016. Disponível (online) <http://www.cazy.org/>.

CASTRO, Aline Machado de; PEREIRA JUNIOR, Nei. Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Química Nova, [s.l.], v. 33, n. 1, p.181-188, 2010. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-40422010000100031.

OGEDA, Thais Lucy; PETRI, Denise F. S. Hidrólise Enzimática de Biomassa. Química Nova, [s.l.], v. 33, n. 7, p.1549-1558, 2010. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-40422010000700023.

RYTIOJA, Johanna et al. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes. Microbiology and Molecular Biology Reviews, [s.l.], v. 78, n. 4, p.614-649, 26 nov. 2014. American Society for Microbiology. http://dx.doi.org/10.1128/mmbr.00035-14. [23] ALBERTS, Bruce et al. Biologia molecular da célula, 6th edição. Artmed Editora, 2017.

LAMBERT, Samuel A. et al. The Human Transcription Factors. Cell, [s.l.], v. 172, n. 4, p.650-665, fev. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2018.01.029.

LEE, Tong ihn; YOUNG, Richard A. Transcriptional Regulation and Its Misregulation in Disease. Cell, [s.l.], v. 152, n. 6, p.1237-1251, mar. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2013.02.014.

SUKUMARAN, R. K.; SINGHANIA, R. R.; PANDEY, A. Microbial cellulases - Production, applications and challenges. Journal of Scientific & Industrial Research, v. 64, p.832-844, fev. 2005. http://nopr.niscair.res.in/bitstream/123456789/5375/1/JSIR%2064%2811%29%20832-844.pdf

BHATTACHARYA, Ankita Shrivastava; BHATTACHARYA, Abhishek; PLETSCHKE, Brett I. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnology Letters, [s.l.], v. 37, n. 6, p.1117-1129, 6 fev. 2015. Springer Nature. http://dx.doi.org/10.1007/s10529-015-1779-3.

PUNT, Peter J et al. Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, [s.l.], v. 20, n. 5, p.200-206, maio 2002. Elsevier BV. http://dx.doi.org/10.1016/s0167-7799(02)01933-9.

GERTZ, J. et al. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Research, [s.l.], v. 22, n. 11, p.2153-2162, 26 set. 2012. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/gr.135681.111.

AMORE, Antonella; GIACOBBE, Simona; FARACO, Vincenza. Regulation of Cellulase and Hemicellulase Gene Expression in Fungi. Current Genomics, [s.l.], v. 14, n. 4, p.230-249, 1 jun. 2013. Bentham Science Publishers Ltd.. http://dx.doi.org/10.2174/1389202911314040002.

YAO, Guangshan et al. Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnology for Biofuels, [s.l.], v. 8, n. 1, p.1-1, 23 abr. 2015. Springer Nature. http://dx.doi.org/10.1186/s13068-015-0253-8.

ISHIKAWA, Kana et al. Comparison of the paralogous transcription factors AraR and XlnR in Aspergillus oryzae. Current Genetics, [s.l.], v. 64, n. 6, p.1245-1260, 13 abr. 2018. Springer Nature. http://dx.doi.org/10.1007/s00294-018-0837-5.

CORADETTI, S. T. et al. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proceedings of the National Academy of Sciences, [s.l.], v. 109, n. 19, p.7397-7402, 24 abr. 2012. Proceedings of the National Academy of Sciences. http://dx.doi.org/10.1073/pnas.1200785109.

LEI, Yunfeng et al. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum. Research in Microbiology, [s.l.], v. 167, n. 5, p.424-435, jun. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.resmic.2016.03.001.

MACH-AIGNER, A. R. et al. Transcriptional Regulation of xyr1, encoding the Main Regulator of the Xylanolytic and Cellulolytic Enzyme System in Hypocrea jecorina. Applied and Environmental Microbiology, [s.l.], v. 74, n. 21, p.6554-6562, 12 set. 2008. American Society for Microbiology. http://dx.doi.org/10.1128/aem.01143-08.

KUHLS, K. et al. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proceedings of the National Academy of Sciences, [s.l.], v. 93, n. 15, p.7755-7760, 23 jul. 1996. Proceedings of the National Academy of Sciences. http://dx.doi.org/10.1073/pnas.93.15.7755.

RAULO, Roxane; KOKOLSKI, Matthew; ARCHER, David B. The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger. Amb Express, [s.l.], v. 6, n. 1, p.1-1, 16 jan. 2016. Springer Nature. http://dx.doi.org/10.1186/s13568-016-0177-0.

ISHIKAWA, Kana et al. Comparison of the paralogous transcription factors AraR and XlnR in Aspergillus oryzae. Current Genetics, [s.l.], v. 64, n. 6, p.1245-1260, 13 abr. 2018. Springer Nature. http://dx.doi.org/10.1007/s00294-018-0837-5.

OKA, Hiroya et al. Comprehensive investigation of the gene expression system regulated by an Aspergillus oryzae transcription factor XlnR using integrated mining of gSELEX-Seq and microarray data. Bmc Genomics, [s.l.], v. 20, n. 1, p.1-1, 8 jan. 2019. Springer Nature. http://dx.doi.org/10.1186/s12864-018-5375-5.

LLANOS, Agustina et al. Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule. Microbial Cell Factories, [s.l.], v. 18, n. 1, p.1-1, 28 jan. 2019. Springer Nature. http://dx.doi.org/10.1186/s12934-019-1062-8.

YAN, Qin et al. Effect of different terminators on transcription regulatory factor ClrB and XlnR in Penicillium oxalicum 114-2. Proceedings Of The 2018 7th International Conference on Energy, Environment and Sustainable Development (iceesd 2018), [s.l.], p.1-1, 2018. Atlantis Press. http://dx.doi.org/10.2991/iceesd-18.2018.225.

Published

2019-06-21

How to Cite

Pessi de Abreu, F., Polesello Menin, R., Souza de Oliveira, N., Lenz, A. R., Ávila e Silva, S., Pinheiro Dillon, A. J., & Camassola, M. (2019). Role of gene regulation in the action of lignocellulolytic enzymes. Interdisciplinary Journal of Applied Science, 4(7), 43–46. Retrieved from https://sou.ucs.br/revistas/index.php/ricaucs/article/view/79