Participatory monitoring of the Exploradores glacier (46°S):

Opportunities and challenges for the development of Scientific Tourism in the glaciers of chilean Patagonia

Authors

  • Marcos Cole Universidad Austral de Chile
  • Fabien Bourlon Universidad Austral de Chile
  • Pablo Iribarren Universidad Austral de Chile
  • Inigo Irarrazaval Universidad Austral de Chile

DOI:

https://doi.org/10.18226/21789061.v17ip170206

Keywords:

Participatory Monitoring, Glacier Mass Balance, Citizen Science, Scientific Tourism

Abstract

The estimation of a glacier's mass balance, including its components such as accumulation and ablation, is a challenging task due to the meteorological complexities and access difficulties characteristic of mountainous regions. These limitations affect the temporal resolution of the data collected in the field. Nevertheless, in various parts of the world, tourist glaciers offer the opportunity to involve visitors as collaborators in scientific projects, which falls under the framework of so-called "Citizen Science." The Exploradores Glacier (46°S), one of the most visited glaciers in Chile since 2001, has been the site of activities such as ice hikes, making it an ideal candidate for the development of participatory monitoring initiatives. The objective of this research is to estimate the mass balance of the Exploradores Glacier using Citizen Science techniques and validate these results through a surface energy balance model implemented in Python, known as COSIPY. To achieve this, the "Community Workers" model was adapted and implemented through participatory workshops, installation of ablation stakes, and data collection by volunteers. The data obtained between November 1, 2021, and March 31, 2022, were processed to estimate the glacier's summer ablation, resulting in an average mass balance of -14.14 m.w.e. This value was compared to the COSIPY model estimates, which indicated an average variation of -7.78 m.w.e. Although the magnitudes of both methods differ, they show a similar trend, suggesting that the discrepancies may be due to simplifications inherent in the models. This study concludes that Citizen Science holds great potential for facilitating research in remote areas such as mountainous regions, extending the temporal and spatial coverage of data collection. Additionally, it highlights the importance of considering possible sources of error that may influence the accuracy of results obtained through these participatory methodologies.

Author Biographies

Marcos Cole, Universidad Austral de Chile

MSc Water Resources. Estudiante, Universidad Austral de Chile, Valdivia, Los Ríos, Chile. E-mail: marc.cole.geo@gmail.com 

Fabien Bourlon, Universidad Austral de Chile

Phd. Geografía Social, Investigador, Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile & Université Grenoble Alpes, CNRS, Sciences Po Grenoble, Laboratoire PACTE, Grenoble, France. ORCID: https://orcid.org/0000-0001-9885-1580. E-mail: fabienbourlon@ciep.cl.

Pablo Iribarren, Universidad Austral de Chile

Phd. Geografía Física. Profesor, Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Isla Teja. Valdivia, Chile. ORCID: https://orcid.org/0000-0003-1693-3561. E-mail: pablo.iribarren@uach.cl.

Inigo Irarrazaval, Universidad Austral de Chile

PhD. Ciencias de la Tierras, Investigador, Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile. ORCID: https://orcid.org/0000-0001-8594-9669. E-mail: inigo.irarrazaval@ciep.cl.

References

Bourlon, F., Vialette, Y., & Mao, P. (2022). Science as a resource for territorial and tourism development of mountainous areas of Chilean Patagonia. Revue de Géographie Alpine, 110(1).

Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers (4ª ed.). Elsevier.

Dirección General de Aguas (DGA). (2022). Inventario público de glaciares. Ministerio de Obras Públicas de Chile.

Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., & Rabatel, A. (2019). Two decades of glacier mass loss along the Andes. Nature Geoscience, 12, 802–808.

Escobar, F., Casassa, G., & Peña, H. (1995). Variaciones de un glaciar de montaña en los Andes de Chile central en las últimas dos décadas. Bulletin de l’Institut Français d’Études Andines, 24(3), 683–695.

Farías-Barahona, D., Vivero, S., Casassa, G., Masiokas, M., & Rodríguez, C. (2019). Geodetic mass balances and area changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sensing, 11(19), 2247.

Huintjes, E., Sauter, T., Schröter, B., Maussion, F., Yang, W., Kropáček, J., & Schneider, C. (2015). Evaluation of a coupled snow and energy balance model for Zhadang Glacier, Tibetan Plateau, using glaciological measurements and time-lapse photography. Arctic, Antarctic, and Alpine Research, 47(3), 573–590.

IPCC. (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer, Eds.). Cambridge University Press.

Irarrazaval, I., Dussaillant, A., Vivero, S., Iribarren-Anacona, P., & Mariethoz, G. (2022). Ice dynamics and morphological changes during proglacial lake development at Exploradores Glacier, Patagonia. Frontiers in Earth Science, 10, 791487.

Iribarren Anacona, P., Norton, K. P., & Mackintosh, A. (2014). Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin. Natural Hazards and Earth System Sciences, 14, 3243–3259.

Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., Dussaillant, I., & MacDonell, S. (2020). A review of the current state and recent changes of the Andean cryosphere. Frontiers in Earth Science, 8.

Rivera, A., Bown González, F., Napoleoni, F., Muñoz, C., & Vuille, M. (2017). Manual balance de masa glaciar. CIREN.

Sauter, T., Arndt, A., & Schneider, C. (2020). COSIPY v1.3 – An open-source coupled snowpack and ice surface energy and mass balance model. Geoscientific Model Development, 13(11), 5645–5662.

Thiel, K., Arndt, A., Wang, P., Li, H., Li, Z., & Schneider, C. (2020). Modeling of mass balance variability and its impact on water discharge from the Urumqi Glacier No. 1 catchment, Tian Shan, China. Water, 12(12), 3297.

Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research, 43(7).

Wilderman, C. C. (2007). Models of community science: Design lessons from the field.

Published

2025-09-09

How to Cite

Cole, M., Fabien Bourlon, Iribarren, P., & Irarrazaval, I. (2025). Participatory monitoring of the Exploradores glacier (46°S): : Opportunities and challenges for the development of Scientific Tourism in the glaciers of chilean Patagonia. Revista Rosa Dos Ventos - Turismo E Hospitalidade, 17(2), e170206. https://doi.org/10.18226/21789061.v17ip170206