Sistemas de tratamento de efluentes de vinícola: tendências e desafios

Autores/as

DOI:

https://doi.org/10.18226/25253824.v8.n13.16

Palabras clave:

Efluente industrial, Tratamentos biológicos, Wetlands construídos, Processos oxidativos avançados, Células microbianas de combustível

Resumen

A produção de vinho é uma prática milenar com fortes aspectos culturais e econômicos. Entretanto, vinícolas descartam 0,2 a 14 litros de efluentes por litro de vinho produzido e as crescentes pressões ambientais requerem o uso de tecnologias cada vez mais eficientes para seus tratamentos. O presente trabalho apresenta uma revisão sistemática de literatura para identificar os desafios e tendências nos sistemas de tratamento de efluentes de vinícola. A revisão analisou 122 estudos publicados entre 2013 e 2022. Tratamentos biológicos são os mais investigados e apresentam remoções médias de 85% de demanda química de oxigênio (DQO). Entretanto, esses sistemas apresentam dificuldades na remoção de cor, polifenóis e nutrientes. Pesquisas exitosas buscam superar esse desafio com a adição de algas e fungos nos reatores. Os tratamentos físico-químicos geralmente apresentam maior custo de operação, porém podem ser mais adaptáveis às sazonalidades na produção. Os wetlands construídos apresentam boas remoções de nutrientes. Porém, a área requerida os limita a agroindústrias de menor porte. Outros sistemas avançados apresentam tendências positivas, seja pela possibilidade de reaproveitamento de energia elétrica, a exemplo das células microbianas de combustível (MFCs), ou pelo reaproveitamento de resíduos da própria indústria no sistema. A presente revisão sistemática de literatura sobre os sistemas de tratamento de efluentes de vinícola fornece uma visão sobre o estado da arte nesse campo e destaca a tendência de desenvolvimento de soluções mais sustentáveis e eficientes para minimizar os impactos ambientais da agroindústria.

Citas

International Organization of Vine and Wine. (2021). State of the world vitivinicultural sector in 2020. Recuperado de https://www.oiv.int/sites/default/files/documents/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6_0.pdf

Holtman, G. A., Haldenwang, R. & Welz, P. J. (2022). Calcite Dissolution and Bioneutralization of Acidic Wastewater in Biosand Reactors. Water, 14(21). https://www.mdpi.com/2073-4441/14/21/3482

Milani, M., Consoli, S., Marzo, A., Pino, A., Randazzo, C., Barbagallo, S. & Cirelli, G. L. (2020). Treatment of winery wastewater with a multistage constructedwetland system for irrigation reuse. Water (Switzerland), 12. https://www.mdpi.com/2073-4441/12/5/1260

Amor, C., Marchão, L., Lucas, M. S. & Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water (Switzerland), 11(2). https://www.mdpi.com/2073-4441/11/2/205

Spennati, E., Casazza, A. A., Perego, P., Solisio, C., Busca, G. & Converti, A. (2019). Microalgae growth in winery wastewater under dark conditions. Chemical Engineering Transactions, 74, p. 1471–1476. https://doi.org/10.3303/CET1974246

Fernandes, J. M. C., Sousa, R. M. O. F., Fraga, I., Sampaio, A., Amaral, C., Bezerra, R. M. F. & Dias, A. A. Fungal biodegradation and multi-level toxicity assessment of vinasse from distillation of winemaking by-products. Chemosphere, 218. https://doi.org/10.1016/j.chemosphere.2019.124572

Buitrón, G., Martínez-Valdez, F. J. & Ojeda, F. (2019). Biogas Production from a Highly Organic Loaded Winery Effluent Through a Two-Stage Process. Bioenergy Research, 12(3), 714–721. https://doi.org/10.1007/s12155-019-09984-7

Policastro, G., Luongo, V. & Fabbricino, M. Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source. Journal of Environmental Management, 271. https://doi.org/10.1016/j.jenvman.2020.111006

Liu, T., Nadaraja, A. V., Shi, J. & Roberts, D. J. (2021). Stable Performance of Microbial Fuel Cell Technology Treating Winery Wastewater Irrespective of Seasonal Variations. Journal of Environmental Engineering, 147(10). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001921

Luz, S., Rivas, J., Afonso, A. & Carvalho, F. (2021). Immediate one-step lime precipitation process for the valorization of winery wastewater to agricultural purposes. Environmental Science and Pollution Research, 28, 18382-91. https://doi.org/10.1007/s11356-020-11933-3

Nayak, A., Bhushan, B. & Rodriguez-Turienzo, L. (2018). Recovery of polyphenols onto porous carbons developed from exhausted grape pomace: A sustainable approach for the treatment of wine wastewaters. Water Research, 145, 741–756. https://doi.org/10.1016/j.watres.2018.09.017

Petta, L., de Gisi, S., Casella, P., Farina R. & Notarnicola, M. (2017). Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption. Journal of Environmental Management, 201, 177–189. http://dx.doi.org/10.1016/j.jenvman.2017.06.042 03

Ioannou, L. A., Puma, G. L. & Fatta-Kassinos, D. (2015). Treatment of winery wastewater by physicochemical, biological and advanced processes: A review. Journal of Hazardous Materials, 286, 343–368. http://dx.doi.org/10.1016/j.jhazmat.2014.12.043

Vital-Jacome, M., Cazares-Granillo, M., Carrillo-Reyes, J. & Buitron, G. (2020). Characterization and anaerobic digestion of highly concentrated Mexican wine by-products and effluents. Water Science and Technology, 81(1), p. 190–198. https://doi.org/10.2166/wst.2020.102

Mosse, K. P., Verheyen, V., Cruickshank, A. J. & Patti, A. F. (2013). Soluble organic components of winery wastewater and implications for reuse. Agricultural Water Management, 120, n. 1, p. 5–10. http://dx.doi.org/10.1016/j.agwat.2012.05.011

Kalogerakis, N., Kalogerakis, G. C. & Botha, Q. P. (2021). Environmental applications of nanobubble technology: Field testing at industrial scale. Canadian Journal of Chemical Engineering, 99(11), 2345–2354. https://doi.org/10.1002/cjce.24211

Ramond, J. B., Welz, P. J., Tuffin, M. I., Burton, S. G. & Cowan, D. A. (2013). Assessment of temporal and spatial evolution of bacterial communities in a biological sand filter mesocosm treating winery wastewater. Journal of Applied Microbiology, 115, 91–101. https://doi.org/10.1111/jam.12203

Tsolcha, O. N., Tekerlekopoulou, A. G., Akratos, C. S., Aggelis, G., Genitsaris, A., Moustaka-Gouni, M. & Vayenas, D. V. (2017). Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium. Journal of Cleaner Production, 148, 185–193. http://dx.doi.org/10.1016/j.jclepro.2017.02.026

Ganeshkumar, V., Subashchandrabose, S. R., Dharmarajan, R., Venkateswarlu, K., Naidu, R. & Megharaj, M. (2018). Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3. Bioresource Technology, 256, 254–258. https://doi.org/10.1016/j.biortech.2018.02.025

Kim, B., Gutier, M., Prost-Boucle, S., Molle, P., Michel, P. & Gourdon, R. (2014). Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment. Ecological Engineering, 71, 41–47. http://dx.doi.org/10.1016/j.ecoleng.2014.07.045

Sánchez, M., Gonzalo, O. G., Yáñez, S., Ruiz, I. & Soto, M. (2021). Influence of nutrients and pH on the efficiency of vertical flow constructed wetlands treating winery wastewater. Journal of Water Process Engineering, 42. https://doi.org/10.1016/j.jwpe.2021.102103

Kongthale, G., Sotha, S., Michu, P., Madloh, A., Wetchapan, P. & Chaijak, P. (2023). Electricity Production and Phenol Removal of Winery Wastewater by Constructed Wetland – Microbial Fuel Cell Integrated With Ethanol Tolerant Yeast. Biointerface Research in Applied Chemistry, 13(2). https://doi.org/10.33263/BRIAC132.157

Rizzo, A., Bresciani, R., Martinuzzi, N. & Masi, F. (2020). Online monitoring of a long-term full-scale constructed wetland for the treatment of winery wastewater in Italy. Applied Sciences (Switzerland), 10(2). https://doi.org/10.3390/app10020555

Jorge, N., Teixeira, A. R., Matos, C. C., Lucas, M. S. & Peres, J. A. (2021). Combination of coagulation–flocculation–decantation and ozonation processes for winery wastewater treatment. International Journal of Environmental Research and Public Health, 18. https://doi.org/10.3390/ijerph18168882

Yáñez, E., Santander, P., Contreras, D., Yáñez, J., Cortejo, L. & Mansilla, H. D. (2016). Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light. Journal of Environmental Science and Health, 51(1), 78–85. http://dx.doi.org/10.1080/10934529.2015.1086211

Guimarães, V., Lucas, M. S. & Peres, J. A. (2019). Combination of adsorption and heterogeneous photo-Fenton processes for the treatment of winery wastewater. Environmental Science and Pollution Research, 26(30), 31000–13. https://doi.org/10.1007/s11356-019-06207-6

Thirugnanasambandham, K., Sivakumar, V., Loganathan, K., Jayakumar, R. & Shine, K. (2016). Pilot scale evaluation of feasibility of reuse of wine industry wastewater using reverse osmosis system: modeling and optimization. Desalination and Water Treatment, 57 (53), p. 25358–68. https://doi.org/10.1080/19443994.2016.1154894

Publicado

2025-01-16

Cómo citar

Melchiors, E., & Bentes Freire, F. (2025). Sistemas de tratamento de efluentes de vinícola: tendências e desafios. Revista Interdisciplinaria De Ciencias Aplicadas, 8(13), 1–6. https://doi.org/10.18226/25253824.v8.n13.16