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Abstract

In this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients
evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes,
with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational
cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision
tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how
atom parameters such as frequency and amplitude are affected by the presence of sleep apnea.
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I. INTRODUCTION

The Obstructive Sleep Apnea Syndrome (OSAS) is
characterized by functional airway obstruction, fragmenting
sleep and impairing blood oxygenation [1]. These features
may be reflected in the EEG tracing, indicating changes in
brain functioning. Sleep microstructure has been shown to be
affected in OSAS [2]. When dealing with this type of problem,
the irregularity and nonstationarity of the EEG signal emerges
together with a wide range of variables, resulting in the need
for massive computational analysis, regardless of the tools
employed [1], [3].

In order to process and analyze massive data obtained from
human sleep studies in the context of OSAS investigation,
we used the GRID/UNESP [4] system. The amount of results
obtained in a week of GRID processing was comparable to
more than a decade of processing on conventional PCs. Our
dataset was processed during the winter of 2010 and has
been analyzed since that time, advancing knowledge on the
sleep EEG frequency-distribution problem in OSAS patients
[5]–[7]. The aim of this work is to present the GRID/UNESP
computing system helping to understand a real clinical EEG
problem.

In this study, Matching Pursuit (MP) procedure is applied
to the detection and analysis of EEG sleep spindles in
patients evaluated for suspected OSAS. The importance of
individualized voltage thresholds for spindle detection, as well
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as MP dictionary size is explored in the first part of the study.
Variability in the characteristics of atoms representing sleep
spindles in OSAS patients is analyzed in the second part of the
study, from the perspective of a decision tree-based classifier.

II. MATERIALS AND METHODS

A. Dataset

This study was approved by the local ethics committee
and all subjects provided informed consent before entering
the study. The series comprised single consecutive sleep
studies pertaining to 49 patients (47.6 ± 13.6 age years; 16
female) with suspected OSAS, who underwent investigation
in Hospital de Clinicas de Porto Alegre from April 2007
to July 2009, meeting study criteria (maximum age = 60y,
willingness to participate in study, no previous treatment for
OSAS, no alcohol or substance abuse).

Polysomnography examinations were performed during the
usual sleep time on a 64-channel, 16 bit resolution digital
system (Deltamed, Racia-Alvar, Belgium). The signal was
digitized with a 256 Hz sampling rate. The recording protocol
followed standard AASM guidelines [8] including information
on scalp EEG, eye movement, chin and leg electromyogram,
electrocardiogram, snoring, airflow by oronasal thermistor,
thoracic and abdominal respiratory effort, body position and
pulse oximetry. Scalp EEG electrode placement included
10-20 IS Fp1, F3, C3, P3, O1, A1, Fp2, F4, C4, P4, O2 and
A2 positions. Initial impedances had to be below 10KΩ.

Studies were visually scored according to AASM 2007
rules by a trained rater (EEG electrodes referenced to
contralateral mastoid with 0.3 s time constant, 7 muV/mm
sensitivity, system’s 0.5 − 70 Hz band-pass and 60 Hz notch
filters applied). Respiratory events were scored after [8]
recommendations, employing obstructive hypopnea rule 4B.
Subjects were classified into three groups according to their
global apnea-hypopnea index (AHI): Control (C) (IAH ≤
5/min), 8 subjects; Mild-Moderate (M) (5 < IAH ≤ 30), 22
subjects; and Severe (S) (IAH > 30), 19 subjects. The size
of each sleep study ranged from 6 to 8 hours. Analyses were
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performed on 6 EEG channels: F3, F4, C3,C4, P3 and P4, all
referenced to (A1+A2)/2. For each test performed here were
used the last 30min of sleep stage 2.

B. Matching Pursuit

Matching Pursuit is not a transform but an adaptive
approximation of the signal by a set of core functions
chosen from a dictionary. MP describes the signal through
fundamental “Atoms” (a dictionary of functions, like words in
a language). MP time-frequency dictionaries were introduced
in [9] and a correction scheme for large data sizes, such as
EEG case, was complemented in [3]. On the MP approach, a
signal S(t) is obtained, and subsequent steps are made to adapt
S(t) in terms of a basic dictionary and redundant functions.

The basic strategy is to iteratively decompose the signal,
looking at each iteration for Gabor wave functions of arbitrary
support like

gγ(t) = αe−π[
(t−t′)

s ]2 sin

[
2πω

N
[(t−t′)+β(t−t′)2]+φ

]
, (1)

where α is the amplitude, t′ and ω are the central time position
and frequency of the atom respectivelly, β is a chirp factor and
N is the size of the series window submited to MP procedure.
This function choice is most similar to EEG signal [3], [5],
[10]. The similarity measure used is the inner product between
the signal and the Gabor function. This Gabor function is
subtracted from the signal and the resulting signal, commonly
called the residue, is again submitted to the methodology.
Thus, the signal is decomposed into a sum of waveforms,
prototypes or atoms with different weights or coefficients. For
further methodology description see [3], [5]–[7], [9]–[11].

C. Computational GRID

The problem of MP analysis can be classified as a “bag
of tasks”, since it is in an independent set of tasks with high
computational cost. The computational cost of performing the
integrative analysis of the results is negligible. We therefore
used the task scheduler Condor to coordinate the submission
process of analyzing the series.

D. Statistical and parameter analysis

There are several variables that are used to describe the
signal in a MP approach, but these can be divided into two
basic groups: a dictionary of function parameters (amplitude,
frequency, etc . . .) and proper parameters of the MP procedure
itself (basically dictionary size and atom shape). Each atom,
as described by 1, has amplitude, duration and central
frequency, plus a term (β) measuring frequency modulation.
These parameters are often called “descriptors of the signal”,
however may subtly vary with the choice of dictionary size.
Classically the β term is not used due to computational
cost. Here we use four different dictionaries to describe the
signal: 70000 (70 k) and 100000 (100k) atoms with (wc)
and without (nc) the beta modulation term, respectively. This
choice allows to verify whether there is any difference between
the dictionaries at this accuracy level.

In all cases, the MP approach requires some minimum
amplitude threshold to be chosen, so that an atom is regarded

as representative of events observed in the EEG. Atoms very
small, with low amplitude or short duration, are part of the
so-called signal background. Here we focus on sleep spindles,
collecting atoms with 0.5s to 2s half-width (±σ on a Gaussian
curve) duration, central frequency ranging from 11Hz to 16Hz
and β (chirp rate) between −2Hz/s and 2Hz/s. These elements
are intrinsically nonstationary [1], [3], [10], [11] and many
studies are attempting to address this internal variation of their
frequency [1]. Moreover, these events are very dependent on
the subject (individual variability), especially with regard to
their amplitude. Considering that we have a large database,
we can address the question of subject amplitude dependence
and make an analysis based on a variable amplitude threshold
per subject and channel criterion. We chose to consider only
the top 10% higher amplitude elements.

E. Decision tree-based classification

In order to determine which atom parameter is more affected
by the presence of respiratory events, the set of 1491 atoms
obtained using the 100K wc MP dictionary was subjected
to the WEKA J48 decision tree procedure. We used WEKA
(Waikato Environment for Knowledge Analysis) software
package, a collection of machine learning algorithms for data
mining tasks [12]. It was possible to build a decision tree
classifying subjects in the three (C, M and S) studied groups.

III. RESULTS

Using the criteria detailed in the previous section, we can
extract elements in sleep spindle frequency range in both ways
(with a fixed amplitude criterion and a criterion depending
on the subject/signal amplitude). Both are shown in Figure
1. In Figure 1A is shown the amount of MP atoms found
with a fixed 40 muV amplitude criterion, similar to that used
in [3], [11] for healthy young adults. Here the variability
between subjects is very evident, regardless of AHI index.
In Figure 1B this effect is attenuated by using an adaptive
amplitude criterion (where only the top 10% higher amplitude
elements for each subject and channel are used). As the use
of a variable (individualized) threshold allows collecting a
more representative sample of atoms from each subject, this
approach was used for atom collection throughout the rest of
the study.

Figure 2 shows atom distribution considering MP dictionary
size and presence or absence of the beta (frequency
modulation) term. No significant differences were found for
dictionary (70k or 100k) size. There is a decrease in the
number of elements when using a more complete (wc)
dictionary, which is expected since fewer atoms (but more
complex) are needed to describe the signal.

In order to test how sensitive atom parameters are compared
accross AHI (Apnea-Hypopnea Index) groups, we employed
a decision tree approach using J48 algorithm. The result is
the decision tree shown in Figure 3. In this tree, right-sided
numbers count for errors and left-sided represent matches.
Atom amplitude and frequency criteria, as well as subject
gender appear in the tree and are discussed in the last section.

The number of correctly classified instances is 855 ±
(57.3%), the incorrectly classified comprise 636 ± (42.6%).
The Kappa statistic is 0.3602, mean absolute error 0.36 and
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Fig. 1: Histograms showing the number of atoms representing
sleep spindles for the 49 cases using a fixed threshold criterion
for all subjects (A) and using only the 10% higher amplitude
atoms (B). The amplitude threshold is found for each channel
independently. Scalp EEG positions are presented at top for
guidance.
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Fig. 2: Histograms showing the number of elements found by
channel using a variable amplitude threshold (related to B in
Fig 1) for the four types of dictionaries. 70k means 70000
atoms, 100k means 100000 atoms, wc means β frequency
modulation different of zero and nc means β = 0.
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Fig. 3: Decision tree based in J48 algorithm. Notice in the
figure, the criteria used to separate the three categories of
apnea severity. Females contribute with 32% of the elements
and male with the remaining 68%. Chirp means beta value in
eq 1.

root mean squared error 0.4286. It is important to consider
that there are three different categories.

IV. DISCUSSION AND CONCLUSIONS

The number of atoms in the MP dictionary did not affect
the number of atoms found in the sleep spindle frequency
and duration range. This is in agreement with the fact that
spindles are one of the easiest structures to be separated
from background EEG noise. This does not imply that
spindle visualization by humans is an easy task when there
is superimposition with slow waves. The use of a more
complex dictionary implies a more complete description with
fewer atoms, which is not surprising because these atoms
are more representative of the signal. However, this also
increases computational cost. When using a clinical EEG
sample, subject inter-variability becomes clear and makes
necessary a selection approach based on a spindle amplitude
criterion adjustable for individual and channel [13].

Based on Figure 3 we can see that it is possible to separate
spindles obtained from the three apnea groups with good
accuracy. In the case of atoms with higher amplitudes, gender
is no longer relevant for the classification, which shows that
these atoms can be representative of the clinical problem with
the implication that higher amplitude and faster spindles are
easily found in C group. Note that these atoms represent
the top 10% higher amplitude atoms for each subject. For
smaller amplitude atoms, gender seems to play some role in
the differentiation, with frequency being the separator criterion
for men and amplitude for women. This result, however, needs
to be considered with caution since the female sample was
relatively small and had less severe apnea. Moreover, atoms
with low amplitude also tend to be less representative, possibly
indicating that the main spindle generator mechanism is not
active, and what is being observed in this case may be just
background noise.

It should be kept in mind that spindles are considered
to be markers of integrity for thalamo-cortical circuits.
Subjects with high AHI scores produced spindles with lower
amplitude and frequency, and this can be best observed
in male patients. However, looking at the left part of the
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tree in figure 3 it is possible to see that females with
low amplitude spindles tend to corroborate this finding. In
conclusion, it was possible to see that, for this sample, patients
with sleep apnea produced spindles with lower amplitude
and frequency. These results correlate well with theories of
brain plasticity. Chronic problems, such as apnea, Parkinson’s
disease, epileptic encephalopathy, and others eventually impact
neural mechanisms through final common pathways that may
translate into lower amplitudes for short time EEG transients
like spindles [7], [14]–[17].

This is a preliminary work where it was possible to
perform systematic MP decomposition of sleep EEG signals
pertaining to a representative sample of apnea patients, thereby
finding a dictionary size more appropriate for this type of
study. The results suggest a possible relation between apnea
correlates, such as blood oxygenation, sleep fragmentation,
spindle characteristics (represented by MP atoms here), and
sleep spindles quality.
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